The following Index is arranged according to subjects on the plan of the Index du Repertoire Bibliographique (published by MM. Gauthier-Villars, pp. 93, 2nd edition, 1898; about 2/-).
EXPLANATORY REMARKS.
It is not possible to give in full the subjects under the thousand or so sub-divisions which appear in the Index; but for the sake of those who do not possess the Index we give the subjects under the principal letters. This will amply suffice for the majority of our readers.
A. | Algebra; Theory of Equations. |
B. | Determinants; Linear substitutions; Elimination; Invariants and Covariants; Complex Quantities. |
C. | Differential and Integral Calculus. |
D. | Theory of Functions; Algebra of Continued Fractions. |
E. | Definite Integrals. . . . |
F. | Elliptic Functions. . . . |
G. | Hyperelliptic Functions. . . . |
H. | Differential Equations . . . Finite Differences, Recurrent Series. |
I. | Arithmetic. Theory of Numbers. |
J. | Permutations and Combinations ; Probabilities ; Calculus of Variations. . . . |
K. | Elementary Geometry and Trigonometry; Geometry of point, line, plane, circle, and sphere ; Perspective ; Descriptive Geometry. |
L1. | Conics. |
L2. | Quadrics. |
M1. | Algebraical Plane Curves. |
M2. | Algebraical Surfaces. |
M3. | Algebraical Space Curves. |
N. | Complexes and Congruences; Connexes; Systems of curves and surfaces; Enumerative Geometry. |
O. | Infinitesimal and Kinematic Geometry. |
P. | Transformations; Homography; Homology; Polar Reciprocals. |
Q. | Geometry of dimensions ; non Euclidean. . . . |
R. | Kinematics; Statics; Dynamics. |
S. | Hydrostatics. |
T. | Mathematical Physics. |
U. | Astronomy. |
V. | Philosophy and History of Mathematics. Biography. |
X. | Graphic Calculation. |
INDEX
TO THE
MATHEMATICAL GAZETTE
VOLUME 1
No. 7,[*] APRIL, 1896--No. 24, DECEMBER, 1900
No. | No. | |||||
7 | April 1896 | pp. 1-24 | 16 | February 1899 | pp. 225-248 | |
8 | July 1896 | pp. 25-48 | 17 | June 1899 | pp. 249-272 | |
9 | October 1896 | pp. 49-72 | 18 | October 1899 | pp. 273-306 | |
10 | February 1897 | pp. 73-96 | 19 | February 1900 | pp. 307-322 | |
11 | June 1897 | pp. 97-120 | 20 | March 1900 | pp. 323-338 | |
12 | October 1897 | pp. 121-144 | 21 | May 1900 | pp. 339-362 | |
13 | February 1898 | pp. 145-176 | 22 | July 1900 | pp. 363-378 | |
14 | June 1898 | pp. 177-200 | 23 | October 1900 | pp. 379-398 | |
15 | October 1898 | pp. 201-224 | 24 | December 1900 | pp. 399-422 |
1. Articles and Notes.
2. Reviews and Short Notices of Books.
3. Solutions and Problems.
ARTICLES AND MATHEMATICAL NOTES
TYPE | SUBJECT | AUTHOR | PAGE |
A.1. | Note on Division. | Genese. | 82 |
A.1. | Simplification of | Langley. | 129 |
A.1.a. | Annuities. | Bryan. | 8 |
A.1.a. | Annuities. | Loney. | 38 |
A.1.a. | Product of Algebraical Expressions. | J. Elliott. | 187 |
A.2,a.; | |||
L1.10.a. | Porismatic Equations. | Davis. | 252, 273 |
A.2.a.; | |||
L1.14.a. | Example of Trigonometrical Porisms. | Bromwich. | 331 |
A.3.k. | Roots of a Cubic. | Vyvyan. | 39 |
B.1.a. | On the fundamental propositions connected with the vanishing of a Determinant. | Heawood. | 344 |
C.1.a. | Differentiation of Inverse Functions. | Wheatley. | 83 |
D.6.a. | A Class of Algebraical Functions. | Tanner. | 152 |
D.6.a. | Note on Prof. Tanner's Article. | Genese. | 184 |
D.6.c.g. | expressed as an infinite product. | A. C. Dixon. | 130 |
E.1.a. | as | A. C. Dixon. | 189 |
I.1. | Some Curiosities in Division. | Langley. | 205, 275 |
I.1. | Criteria of Divisibility. | Greenstreet. | 186 |
I.4.b. | Integral Solutions of . | Besant. | 130 |
I.23.a. | Continued Fractions. | Steggall. | 39 |
I.23.a. | Continued Fractions. | F. S. Macaulay. | 39 |
J.1.d. | Cumulative Voting. | Langley. | 160 |
K | On the Geometric Method. | Larmor. | 1 |
K.1.b. | Equality of Internal Bisectors. | Davis. | 412 |
K.1.b. | On a problem in maxima and minima. | Greenstreet. | 161 |
K.1.a. | Locus of a point subject to certain | Anon. | 64 |
conditions. | |||
K.2.a. | Note on Simson Line. | Greenstreet. | 158 |
K.2.b. | Continuous Transformation. | Billups. | 177 |
K.2.d. | Feuerbach's Theorem. | M'Vicker. | 257 |
K.5.a.;23. | Note on question 309. | J. F. Hudson. | 320 |
K.5.d. | On a problem in maxima and minima. | Greenstreet. | 161 |
K.6.a. | Notes on the straight line. | Lodge. | 158 |
K.8.a. | A property of two triangles; extension | F. S. Macauly. | 177 |
to quadrilaterals. | |||
K.8.a. | Collinearity of midpoints of diagonals | Daniels. | 160 |
of complete quadrilateral. | |||
K.9.a. | Extension of Euclid I. 47 to polygons | Aiyar. | 109 |
K.9.b. | Notes on Euclid IV., 12-14. | Tucker. | 184 |
K.10. | On a statement in Salmon's Conics. | Genese. | 319 |
K.10.b. | Pole and polar properties in the circle. | Budden. | 86 |
K.11.c. | Poncelet's Polygons and Weill's Theorem. | A. C. Dixon. | 121 |
K.11.c. | Proofsof Euclid XIII. 10, | Langley. | 320 |
K.12.b.a. | Circles touching three tangential circles | Barisien. | 279 |
K.13.a. | On question 372, p. 371. | Bromwich. | 393 |
K.14.c.a. | On some semi-regular solids. | Hayward. | 73 |
K.14.d. | Volume of a pyramid. | Lodge. | 64 |
K.16.a. | Spherical Geometry. | Lodge. | 97 |
K.17.e. | On question 90, p. 16. | Palmer. | 214 |
K.20. | Trigonometrical Inequalities. | Fenwick. | 107 |
K.20. | Trigonometrical Inequalities. | Wilkinson. | 394 |
K.20.a. | Circular Measure. | A. C. Dixon. | 188 |
K.20.d. | Geometrical Proofs of Trigonometrical Formulae. | Hooker. | 393 |
K.20.d. | " | Johnston. | 393 |
K.20.d. | " | Thomas. | 412 |
K.20.e. | Geometrical Proof of Statical Theorem. | Davis. | 257 |
K.20.f. | Two formulae in Spherical Trigonometry. | Davis. | 40 |
K.20.f. | A formula in Spherical Trigonometry. | Hartley. | 413 |
K.20.f. | Theorems in Spherical Trigonometry. | Heppel. | 40 |
K..20.f. | On question 90, p. 16. | Palmer. | 231 |
K.21.b. | Trisection of an angle. | Beard and Durell. | 232 |
L1.7.d. | On note 79, p. 337. | Rouse. | 371 |
L1.7.d. | Trilinear coordinates of the Focoids. | Davis. | 336 |
L1.7.d. | On a locus. | Dyer. | 413 |
L1.9.b. | A Theorem of Isoperimetric Loops. | M'Vicker. | 228 |
L1.10.d. | Equation of Directrix of a Parabola. | Tucker. | 110 |
L1.10.d. | Note on Parabola. | Davis. | 371 |
L1.12.c. | The conic determined by five points. | F. S. Macaulay. | 12 |
L1.12.c. | The conic through any five points. | Budden. | 145 |
L1.14.a. | Triangles circuminscribed to parabola and conic. | F. S. Macaulay. | 211 |
L1.16.a. | Locus of centres of in-conics of a quadrilateral. | Daniels. | 161 |
L1.17.a. | Parabola through four concyclic points. | Davis. | 213 |
L1.17.d. | Poncelet's Polygons and Weill's Theorem. | A. C. Dixon. | 121 |
L2.2.b. | A note on the Sphero-Conic. | Morley. | 249 |
L2.21.d. | A note on the Cylindroid. | Davis. | 370 |
M1.2.a.a. | Involution Ranges. | Budden. | 86 |
M1.3.d. | Chords and Tangents to Algebraic Curves. | Genese. | 110 |
M1.3.h. | Asymptotes in polar coordinates. | Gerrans. | 279 |
M4.e. | On question 172, p. 89. | Lodge. | 213 |
M4.e. | On question 172, p. 89. | F. S. Macaulay. | 214 |
O.1 | Application to Conics of a theorem in Infinitesimals. | M'Vicker. | 209 |
P.3.b. | Spherical Geometry. | Lodge. | 97 |
P.3.b. | Theorems connected with Inversion. | M'Vicker. | 276 |
P.3.c. | A Transformation in Elementary Geometry. | M'Vicker. | 190 |
Q.1.d. | John Bolyai's Science Absolute of Space. | F. S. Macaulay. | 25, 49 |
Q.1.d. | Cayley's Theory of the Absolute. | F. S. Macaulay. | 155 |
Q.1.d. | On von Staudt's Geometrie der Lage. | C. A. Scott. | 307, |
323, 363 | |||
R.1. | Notes on Elementary Dynamics. | Muirhead. | 32, 60, 78 |
123, 180 | |||
R.1. | A Chapter in Elementary Dynamics. | Dobbs. | 201 |
R.1. | Chords of Descent. | Roberts. | 212 |
R.1. | Uniformly Accelerated Motion. | Roberts. | 225 |
R.1. | On the expression 'Motion at an Instant.' | Saunder. | 250 |
R.1.a. | Proof of . | E. T. Dixon. | 81 |
R.1.a. | Proof of . | Muirhead. | 106 |
R.1.a. | K. E. of harmonically vibrating particle. | Herschkowitz. | 108 |
R.4.a. | Theorem in Moments. | Langley. | 83 |
R.4.a. | Theorem in Moments. | Roberts. | 130 |
R.4.d. | On quadrilaterals connected with four coplanar forces in equilibrium. | Heawood. | 319, 371 |
R.6. | The Laws of Dynamics. | W. H. Macaulay. | 379, 399 |
V. | Continuous Transformation. | Mackay, Muirhead. | 209 |
V.1.a. | On the teaching of Indices and Surds. | Genese. | 339 |
PROBLEM | TYPE | SOLUTION | 73 | R.9.b. | 45 | |
NUMBER | ON PAGE | 74 | A.3.k. | 45 | ||
18 | K.20.e. | 17 | 76 | L1.17.a. | 46 | |
19 | K.12.a. | 414 | 77 | A.1.b.; B.1.a. | 46 | |
20 | K.4.c. | 17 | 79 | A.2.b.; D.2.d. | 46 | |
21 | K.4.c. | 415 | 80 | A.2.b. | 417 | |
22 | R.4.a. | 17 | 84 | A.1.a. | 46, 68, 90 | |
23 | K.20.f. | 415 | 85 | A.1.a. | 47 | |
24 | K.1.c. | 415 | 86 | L1.8.a. | 47 | |
25 | R.4.a. | 416 | 88 | I.1.; I.19.a. | 47 | |
26 | K.1.c. | 17 | 89 | K.20.c.a. | 48 | |
27 | I.1. | 416 | 91 | A.1.b. | 68 | |
29 | K.9.b. | 416 | 94 | K.21.a.b. | 69, 70 | |
30 | R.7.b.g. | 17 | 95 | A.1.a. | 69 | |
31 | I.13.b.a. v. No.289. | 103 | D.6.b.; D.2.b. | 69 | ||
33 | K.20.c. | 416 | 104 | L1.7.d. | 69 | |
34 | A.1.a. | 417 | 105 | L1.3.d. | 70 | |
35 | A.2.a. | 417 | 105 | L1.10.a.; L1.17.a. | 70 | |
36 | L2.5.a. | 18 | 111 | R.4.a. | 346 | |
38 | C.1.f. | 18 | 112 | R.4.a. | 347 | |
40 | L1.7.b. | 18 | 113 | R.1.a. | 347 | |
41 | L1.17. | 417 | 114 | R.9.b. | 347 | |
43 | K.6.a.b. | 18 | 115 | R.9.b. | 348 | |
44 | K.1.c. | 19 | 116 | C.1.g. | 348 | |
45 | K.4. | 19 | 117 | I.2.b. | 70 | |
46 | A.2.b. | 19 | 118 | K.20.e. | 70 | |
47 | A.2.b. | 19 | 119 | A.3.k. | 70 | |
48 | K.13.a. | 20 | 120 | I.2.b. | 71 | |
49 | I.1. | 20 | 121 | K.20.c.a. | 349 | |
50 | I.1. | 21 | 122 | A.1.b. | 349 | |
52 | L1.5. b.17.e. | 21 | 123 | A.1.b. | 91 | |
55 | I.1. | 21 | 124 | K.1.b.a.b. | 91 | |
57 | L1.17.e.; X. | 395 | 125 | K.13.c. | 133 | |
59 | I.17.c. | 90 | 127 | A.3.k. | 349 | |
67 | K.1.b.b; K.4. | 44 | 128 | K.8.e. | 91 | |
69 | R.2.b. | 45 | 129 | K.11.d. | 396 | |
70 | A.2.b. | 45 | 130 | R.7.b.g. | 91 | |
71 | J.2.c. | 45, 68 | 131 | K.2.a.; K.20.a. | 193 |
132 | K.20.c.; D.2.b. | 349 | 173 | K.2.b. | 119 | |
133 | L1.5.a. | 92, 113 | 174 | P.2.a | 137 | |
134 | R.1.f. | 92 | 176 | L1.5.d. | 137 | |
135 | K.10.e. | 92 | 177 | P.3.b. | 350 | |
136 | P.3.b. | 93 | 178 | P.1.f. | 100 | |
137 | K.20.e. | 93 | 179 | v.No.196. | ||
138 | A.1.a. | 93 | 180 | J.2.c. | 138 | |
139 | A.3.k. | 93 | 181 | B.1.a. | 138 | |
140 | I.2.b. | 94 | 182 | K.1.b.b. | 350 | |
141 | K.13.c.b. | 94 | 183 | K.8.f. v.215. | 139 | |
143 | C.1.g. | 94 | 184 | K.8.a. | 139 | |
144 | J.1.b. | 396 | 185 | A.1.b. | 140 | |
145 | K.1.b.g. | 114 | 186 | K.8.e. | Iw | |
146 | K.20.d.; D.6.b.g. | 114 | 187 | K.4. | 140 | |
147 | K.20.d. | 114 | 188 | K.12.b.a. | 141 | |
148 | P.1.f. | 115 | 189 | K.2.c. | 350 | |
149 | I.1. | 116 | 190 | M1.3.j. | 141 | |
150 | H.3.c. | 235 | 191 | R.4.a. | 141 | |
151 | I.1. | 117 | 192 | R.1.d. | 142 | |
152 | I.1. | 397 | 193 | I.1. | 142 | |
153 | R.l.a. | 117, 350 | 194 | A.3.k. | 238 | |
154 | R.l.a. | 117 | 195 | R.1.a. | 142 | |
155 | K.12.b. | 117, 134 | 196 | A.1.b. | 351 | |
156 | K.5.d. | 118 | 197 | K.13.c. | 165 | |
157 | K.13.c. | 134 | 198 | K.13.c. | 165 | |
158 | K.8.a. | 118 | 199 | J.2.c. | 165 | |
159 | L1.11.a. | 119 | 200 | I.2.b. | 165 | |
160 | A.1.b. | 134 | 201 | L1.7.c.; L1.17.a. | 166,194 | |
161 | A.1.a. | 134 | 202 | K.8.b. | 166 | |
162 | D.6.b.g. | 135 | 203 | K.6.a. | 166 | |
163 | D.2.b.b. | 135 | 204 | A.1.b. | 167 | |
164 | L1.5.a. | 135 | 205 | A.1.a.; I.19.a. | 167 | |
165 | C.1.f. | 135 | 206 | K.11.e. | 167 | |
166 | R.4.a. | 136 | 207 | K.4.a.a. | 168 | |
167 | R.9.b. | 282 | 208 | L1.7.c.; L1.17.a. | 168,194 | |
168 | K.10.e. | 136 | 209 | D.6.b.g. | 169 | |
169 | A.2.a. | 136 | 210 | D.6.b.g. | 169 | |
170 | I.9.c. | 237 | 211 | K.4. | 169 | |
172 | M4.e. | 213 | 212 | D.2.d. | 170 |
213 | L1.6.b. | 170 | 253 | R.7.a. | 263 | |
214 | K.1.a. | 195 | 254 | I.1. | 264 | |
215 | K.8.f. | 196 | 255 | L1.6.b. | 264 | |
216 | K.14.b. | 196 | 256 | K.4. | 264 | |
217 | K.5.b. | 197 | 257 | M1.3.e.; O.2.f. | 265 | |
218 | K.2..a. | 197 | 259 | I.2.b. | 265 | |
219 | B.3.d. | 217 | 260 | L1.3.b. 4.a. | 266 | |
220 | A.1.a. | 197 | 261 | L1.1.c.a. | 266 | |
221 | E.1.c.; K.9.a. | 197,239 | 262 | L1.6.a. | 267 | |
222 | I.25.b. | 198 | 263 | K.11.e. | 267 | |
223 | L1.17.a. | 198 | 264 | K.2.a. | 268 | |
224 | K.11.e. | 199 | 265 | I.2.b. | 351 | |
225 | L1.5.a.b. | 218 | 266 | I.2.b. | 351 | |
226 | L1.17.e. | 220 | 267 | A.3.b. | 283 | |
227 | K.8.a. | 200 | 268 | P.3.b.; K.11.d. | 284 | |
228 | K.10.e. | 220 | 269 | J.1.a.a. | 269 | |
229 | K.13.c. | 220 | 270 | L1.5.b. | 269 | |
230 | K.11.d. | 221 | 272 | L1.1.c. | 269 | |
231 | L1.17.d.5.d. | 222 | 273 | K.11.d. | 284 | |
232 | K.10.b. | 222 | 274 | D.6.b.g. | 418 | |
233 | A.2.a. | 223 | 276 | M1.8; M1.3.i.g. | 420 | |
234 | R.4.c. | 224 | 277 | M1.3.i. | 284 | |
235 | A.1.b. | 239 | 278 | I.2.b. | 351 | |
236 | I.2.b.a. | 240 | 280 | K.16.a. | 285 | |
237 | L1.1.a.; L1.17.a | 240 | 281 | L1.6.a.; O.2.e. | 286 | |
238 | I.2.b. | 241 | 282 | L1.7.d. | 286 | |
239 | I.1. | 241 | 284 | K.2.a. | 287 | |
240 | J.2.c. | 241 | 285 | I.1. | 421 | |
241 | K.1.c. | 242 | 286 | D.6.b.g. | 287 | |
242 | K.8.c. | 244 | 288 | J.1.a. | 288 | |
243 | K.9.b. | 244 | 289 | I.17.a. | 288 | |
244 | K.10.e. | 245 | 290 | K.11.e. | 289 | |
245 | K.1.c. | 246 | 291 | J.2.f. | 352 | |
246 | K.13.c.g. | 246 | 292 | D.2.b.b. | 290 | |
247 | L1.3.b. | 247 | 293 | J.2.f. | 291, 372 | |
248 | K.2.a. | 247 | 294 | K.1.c. | 292 | |
249 | I.2.a.; I.9.c. | 261 | 295 | J.2.f. | 293 | |
250 | L2.2.c.5.c. | 261 | 296 | R.1.d. | 294 | |
251 | L1.11.e.; N.1.e. | 263 | 297 | L1.10.a.b. | 295 |
298 | K.20.c.a. | 295 | 325 | L1.7.d. | 356 | |
299 | I.2.f. | 352 | 328 | K.20.e. | 357 | |
300 | K.1.c.; K.4. | 296 | 329 | D.2.b.b. | 357 | |
301 | L1.4.c.; 7.d. | 296 | 330 | I.2.b. | 358 | |
302 | K.1.b.a. | 298 | 331 | L1.5.a. | 358 | |
303 | L1.3.a. 11.c. | 321 | 332 | R.1.d. | 359 | |
304 | A.1.c.b. | 299 | 333 | K.2.b. | 359 | |
305 | K.9.a. | 299 | 334 | K.2.b.e. | 373 | |
308 | L1.14.a. | 373 | 335 | I.1. | 339 | |
309 | K.5.a.;23. | 300,321 | 339 | K.2.c. | 374 | |
310 | I.1. | 353 | 340 | K.20.e. | 374 | |
313 | K.2.c. | 373 | 342 | I.18.a.c. | 375 | |
314 | K.2.e. | 301 | 343 | L1.7.d. | 375 | |
315 | K.1.c | 301 | 348 | K.9.a. | 375 | |
316 | A.1.b. | 302 | 351 | A.1.b. | 376 | |
317 | D.6.b. | 353 | 352 | K.1.c. | 376 | |
318 | L1.17.e. | 303 | 353 | L1.17.d. | 376 | |
319(a) | R.1.d. | 354 | 354 | K.11.a. | 376 | |
319(b) | J.1.c. | 303 | 355 | K.20.e. | 377 | |
321 | J.1.c. | 354 | 357 | K.11.a.20.e. | 377 | |
322 | L2.2.d. | 355 | 358 | K.1.c. | 378 | |
323 | K.4. | 355 | 359 | K.20.c. | 378 | |
324 | L1.3.c. | 356 | 361 | J.a.a. | 378 |
[*] [Nos. 1-6 were published in quarto form during 1894-5. A list of Articles, etc., contained in these Numbers appears in this Index on pp. xi, xii.]