Primary Division 2018-2019 Round 3 Solutions

P3.1. One of the stories in circulation at the moment is a cautionary tale. A few years ago, a local man fearing an imminent financial crisis left his job in the bank and set up an ecofruit farm. He began well but knew little of either crop rotation or the science of fertilising. The result was that each year his crop was 25% less than in the previous year. The fall between 2007 and 2008 was 64 kg . What was his crop in 2011? Explain.

Solution 1

As 64 kg was 25% so in 2007 the weight of the crop was $4 \times 64=256 \mathrm{~kg}$;
the crop in 2008 was $256-\frac{1}{4} \times 256=192$;
the crop in 2009 was $192-\frac{1}{4} \times 192=192-48=144$;
the crop in 2010 was $144-\frac{1}{4} \times 144=144-36=108$;
the crop in 2011 was $108-\frac{1}{4} \times 108=108-27=81 \mathrm{~kg}$.

Solution 2

64 kg was 25% so in 2007 the weight of the crop was $4 \times 64=256 \mathrm{~kg}$;
The crop in each year was $\frac{3}{4}$ of the crop in the previous year.
So in 2011, after 4 years, the crop was $\frac{3}{4} \times \frac{3}{4} \times \frac{3}{4} \times \frac{3}{4} \times 256=81 \mathrm{~kg}$.

P3.2. Each of the digits 2, 3, 5, 7 and 8 is placed one to a box in the diagram.
(a) If the two-digit number is subtracted from the three digit number,
 what is the smallest possible difference?
(b) If the three-digit number is multiplied by the two-digit number, what is the smallest possible product?

Solution

(a) To make the difference small, we need the smallest possible 3-digit number and the largest possible 2-digit number.
In the 3-digit number, choose the hundreds first, then the tens and finally the units. So the smallest number of hundreds is 2 , the smallest number of tens is 3 and the smallest number of units is 5 . The number is 235 .
In the 2 digit number, choose the tens first and then the units. So the largest number of tens is 8 and we are left with 7 units. The number is 87 .
The smallest difference is then $235-87=148$.
(b)(i) We have to investigate a product \square \times \square We have 5 digits to fill in. So there are 5 ways of filling the first digit, 4 ways of filling the second so $5 \times 4=20$ ways of filling the first two which extends to $5 \times 4 \times 3 \times 2 \times 1=120$ for all 5 digits. So checking all these is not a good way!
We want a small product so using small values in the leading places looks a good start. So consider $2 \times 100 \times 3 \times 10$. This is 6000 . If we replace 3 by 5 , we get $2 \times 100 \times 5 \times 10=10000$ which is bigger not smaller. (Replacing the 2 by 5 gives $5 \times 100 \times 3 \times 10=15000$.) If we get an answer which exceeds 10000 we would need to review these but for now let us consider the leading digits to be 2 and 3 .
We can always reduce a product by ensuring that the digits are increasing within each number e.g. 375×82 can be reordered to 357×28 to get a smaller product.
So we need to try all possibilities for $2 \cdot \times 3 \cdots$ and $3 \cdot \times 2 \cdots$.
$2 \cdot \times 3$.
$25 \times 378=9450$
$27 \times 358=9666$
$28 \times 357=9996$
$3 \cdot \times 2 \cdot$
$35 \times 278=9730$
$37 \times 258=9546$
$38 \times 257=9766$

The smallest of these is $25 \times 378=9450$ which is less than 10000 .
So the smallest possible product is 9450 .
\{A much more complicated solution as included in the solution of J1.\}

P3.3. A jeweller makes sets of small cubes out of solid silver. The jeweller has gold-plated none, some, or all of the faces on some of the cubes. The cubes in a set are all different, and no other cube can be added to the set. How many cubes are there in a set?

Solution 1

Each cube has 6 faces so we need to identify the number of different cubes with each of $0,1,2,3$, 4, 5 or 6 faces gold-plated

Number of faces gold-plated
0
1
2

3

4 (the opposite of 2 faces)
5 (the opposite of 1 face)
6 (the opposite of 0 faces)

Number of different cubes
1
1
1 with an edge in common
1 which opposite faces plated
1 where all 3 faces have a common corner
1 where 3 faces are U-shaped
1 and 1
1
1

So there are 10 cubes in the set.

Solution 2

gold faces
0
1
2 touching
Place the cube on a table on a gold face. The second gold face can be on top (opposite the first gold face) or on a vertical side (touching the first gold face).
2 opposite
3 corner Place the cube on a table on a gold face. The the second gold face can be on top, and so the third gold face must complete a row of 3 gold faces. Alternatively it can be on a vertical side. Then the third gold face may be an adjacent vertical side (the 3 faces touch at a corner). Or the third gold face can be an opposite vertical side or the top face: either way the three gold faces are in a row as before.
3 row
4 (silver touching)
4 (silver opposite)
5
6
So there are 10 cubes in the set.

